动态规划

  • 最长回文子串

长度为1一定是回文子串

根据字串长度进行遍历,L从2开始。如果s[i]==s[j]有两种情况,第一种是j-i<3,那么dp[i][j]一定就是true。还有一种情况是j-i>=3,那么就要看s[i+1][j-1]是否是回文子串dp[i][j] = dp[i + 1][j - 1]。如果都没有s[i]==s[j]那么dp[i][j]显然不是。

#include <iostream>
#include <string>
#include <vector>

using namespace std;

// std::vector<T> vec(size_type n, const T& value);

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        if (n < 2) {
            return s;
        }

        int maxLen = 1;
        int begin = 0;
        // dp[i][j] 表示 s[i..j] 是否是回文串
        vector<vector<bool>> dp(n, vector<bool>(n));
        // 初始化:所有长度为 1 的子串都是回文串
        for (int i = 0; i < n; i++) {
            dp[i][i] = true;
        }
        // 递推开始
        // 先枚举子串长度
        for (int L = 2; L <= n; L++) {
            // 枚举左边界,左边界的上限设置可以宽松一些
            for (int i = 0; i < n; i++) {
                // 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
                int j = L + i - 1;
                // 如果右边界越界,就可以退出当前循环
                if (j >= n) {
                    break;
                }

                if (s[i] != s[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }

                // 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substr(begin, maxLen);
    }
};