house of apple2
[TOC] 参考博客
house of apple2可以在只劫持_wide_data的条件下控制程序的执行流!!!
fp的vtable覆盖为_IO_wxxx_jumps(加减偏移),执行_IO_wfile_overflow或者_IO_wdefault_xsgetn,绕过里面一个个函数调用链,最后根据偏移执行_wide_vtable里面的函数,利用magic gadget执行orw拿到flag
利用条件
使用house of apple2的条件为:
- 已知heap地址和glibc地址
- 能控制程序执行IO操作,包括但不限于:从main函数返回、调用exit函数、通过__malloc_assert触发
- 能控制_IO_FILE的vtable和_wide_data,一般使用largebin attack去控制
漏洞分析
struct _IO_wide_data结构体,发现其对应有一个_wide_vtable成员
struct _IO_wide_data
{
wchar_t *_IO_read_ptr; /* Current read pointer */
wchar_t *_IO_read_end; /* End of get area. */
wchar_t *_IO_read_base; /* Start of putback+get area. */
wchar_t *_IO_write_base; /* Start of put area. */
wchar_t *_IO_write_ptr; /* Current put pointer. */
wchar_t *_IO_write_end; /* End of put area. */
wchar_t *_IO_buf_base; /* Start of reserve area. */
wchar_t *_IO_buf_end; /* End of reserve area. */
/* The following fields are used to support backing up and undo. */
wchar_t *_IO_save_base; /* Pointer to start of non-current get area. */
wchar_t *_IO_backup_base; /* Pointer to first valid character of
backup area */
wchar_t *_IO_save_end; /* Pointer to end of non-current get area. */
__mbstate_t _IO_state;
__mbstate_t _IO_last_state;
struct _IO_codecvt _codecvt;
wchar_t _shortbuf[1];
const struct _IO_jump_t *_wide_vtable;
};
在调用_wide_vtable虚表里面的函数时,同样是使用宏去调用,仍然以vtable->_overflow调用为例,所用到的宏依次为
#define _IO_WOVERFLOW(FP, CH) WJUMP1 (__overflow, FP, CH)
#define WJUMP1(FUNC, THIS, X1) (_IO_WIDE_JUMPS_FUNC(THIS)->FUNC) (THIS, X1)
#define _IO_WIDE_JUMPS_FUNC(THIS) _IO_WIDE_JUMPS(THIS)
#define _IO_WIDE_JUMPS(THIS) \
_IO_CAST_FIELD_ACCESS ((THIS), struct _IO_FILE, _wide_data)->_wide_vtable
可以看到,在调用_wide_vtable里面的成员函数指针时,没有关于vtable的合法性检查。 因此,我们可以劫持IO_FILE的vtable为_IO_wxxx_jumps,控制_wide_data为可控的堆地址空间,进而控制_wide_data->_wide_vtable为可控的堆地址空间。控制程序执行IO流函数调用,最终调用到_IO_Wxxxxx函数即可控制程序的执行流。
_IO_wxxx_jumps
const struct _IO_jump_t _IO_wfile_jumps libio_vtable =
{
JUMP_INIT_DUMMY,
JUMP_INIT(finish, _IO_new_file_finish),
JUMP_INIT(overflow, (_IO_overflow_t) _IO_wfile_overflow),
JUMP_INIT(underflow, (_IO_underflow_t) _IO_wfile_underflow),
JUMP_INIT(uflow, (_IO_underflow_t) _IO_wdefault_uflow),
JUMP_INIT(pbackfail, (_IO_pbackfail_t) _IO_wdefault_pbackfail),
JUMP_INIT(xsputn, _IO_wfile_xsputn),
JUMP_INIT(xsgetn, _IO_file_xsgetn),
JUMP_INIT(seekoff, _IO_wfile_seekoff),
JUMP_INIT(seekpos, _IO_default_seekpos),
JUMP_INIT(setbuf, _IO_new_file_setbuf),
JUMP_INIT(sync, (_IO_sync_t) _IO_wfile_sync),
JUMP_INIT(doallocate, _IO_wfile_doallocate),
JUMP_INIT(read, _IO_file_read),
JUMP_INIT(write, _IO_new_file_write),
JUMP_INIT(seek, _IO_file_seek),
JUMP_INIT(close, _IO_file_close),
JUMP_INIT(stat, _IO_file_stat),
JUMP_INIT(showmanyc, _IO_default_showmanyc),
JUMP_INIT(imbue, _IO_default_imbue)
};
libc_hidden_data_def (_IO_wfile_jumps)
const struct _IO_jump_t _IO_wfile_jumps_mmap libio_vtable =
{
JUMP_INIT_DUMMY,
JUMP_INIT(finish, _IO_new_file_finish),
JUMP_INIT(overflow, (_IO_overflow_t) _IO_wfile_overflow),
JUMP_INIT(underflow, (_IO_underflow_t) _IO_wfile_underflow_mmap),
JUMP_INIT(uflow, (_IO_underflow_t) _IO_wdefault_uflow),
JUMP_INIT(pbackfail, (_IO_pbackfail_t) _IO_wdefault_pbackfail),
JUMP_INIT(xsputn, _IO_wfile_xsputn),
JUMP_INIT(xsgetn, _IO_file_xsgetn),
JUMP_INIT(seekoff, _IO_wfile_seekoff),
JUMP_INIT(seekpos, _IO_default_seekpos),
JUMP_INIT(setbuf, _IO_file_setbuf_mmap),
JUMP_INIT(sync, (_IO_sync_t) _IO_wfile_sync),
JUMP_INIT(doallocate, _IO_wfile_doallocate),
JUMP_INIT(read, _IO_file_read),
JUMP_INIT(write, _IO_new_file_write),
JUMP_INIT(seek, _IO_file_seek),
JUMP_INIT(close, _IO_file_close_mmap),
JUMP_INIT(stat, _IO_file_stat),
JUMP_INIT(showmanyc, _IO_default_showmanyc),
JUMP_INIT(imbue, _IO_default_imbue)
};
const struct _IO_jump_t _IO_wfile_jumps_maybe_mmap libio_vtable =
{
JUMP_INIT_DUMMY,
JUMP_INIT(finish, _IO_new_file_finish),
JUMP_INIT(overflow, (_IO_overflow_t) _IO_wfile_overflow),
JUMP_INIT(underflow, (_IO_underflow_t) _IO_wfile_underflow_maybe_mmap),
JUMP_INIT(uflow, (_IO_underflow_t) _IO_wdefault_uflow),
JUMP_INIT(pbackfail, (_IO_pbackfail_t) _IO_wdefault_pbackfail),
JUMP_INIT(xsputn, _IO_wfile_xsputn),
JUMP_INIT(xsgetn, _IO_file_xsgetn),
JUMP_INIT(seekoff, _IO_wfile_seekoff),
JUMP_INIT(seekpos, _IO_default_seekpos),
JUMP_INIT(setbuf, _IO_file_setbuf_mmap),
JUMP_INIT(sync, (_IO_sync_t) _IO_wfile_sync),
JUMP_INIT(doallocate, _IO_wfile_doallocate),
JUMP_INIT(read, _IO_file_read),
JUMP_INIT(write, _IO_new_file_write),
JUMP_INIT(seek, _IO_file_seek),
JUMP_INIT(close, _IO_file_close),
JUMP_INIT(stat, _IO_file_stat),
JUMP_INIT(showmanyc, _IO_default_showmanyc),
JUMP_INIT(imbue, _IO_default_imbue)
};
利用手法
要注意这个任意地址函数执行会把rop_addr的rop链解析为机器码,无法正确执行rop,因此一般都是要用一个magic gadget来进行rop
_IO_wfile_overflow
对fp的设置如下:
- _flags设置为~(2 | 0x8 | 0x800),如果不需要控制rdi,设置为0即可;如果需要获得shell,可设置为 sh;,注意前面有两个空格
- vtable设置为_IO_wfile_jumps/_IO_wfile_jumps_mmap/ _IO_wfile_jumps_maybe_mmap地址(加减偏移),使其能成功调用_IO_wfile_overflow即可
- _wide_data设置为可控堆地址A,即满足*(fp + 0xa0) = A
- _wide_data->_IO_write_base设置为0,即满足*(A + 0x18) = 0
- _wide_data->_IO_buf_base设置为0,即满足*(A + 0x30) = 0
- _wide_data->_wide_vtable设置为可控堆地址B,即满足*(A + 0xe0) = B
- _wide_data->_wide_vtable->doallocate设置为地址C用于劫持RIP,即满足*(B + 0x68) = C
函数的调用链如下:
_IO_wfile_overflow
_IO_wdoallocbuf
_IO_WDOALLOCATE
*(fp->_wide_data->_wide_vtable + 0x68)(fp)
- _IO_wfile_overflow函数
wint_t
_IO_wfile_overflow (FILE *f, wint_t wch)
{
if (f->_flags & _IO_NO_WRITES) /* SET ERROR */
{
f->_flags |= _IO_ERR_SEEN;
__set_errno (EBADF);
return WEOF;
}
/* If currently reading or no buffer allocated. */
if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0)
{
/* Allocate a buffer if needed. */
if (f->_wide_data->_IO_write_base == 0)
{
_IO_wdoallocbuf (f);// 需要走到这里
// ......
}
}
}
需要满足f->_flags & _IO_NO_WRITES == 0并且f->_flags & _IO_CURRENTLY_PUTTING == 0和f->_wide_data->_IO_write_base == 0
- _IO_wdoallocbuf函数
void
_IO_wdoallocbuf (FILE *fp)
{
if (fp->_wide_data->_IO_buf_base)
return;
if (!(fp->_flags & _IO_UNBUFFERED))
if ((wint_t)_IO_WDOALLOCATE (fp) != WEOF)// _IO_WXXXX调用
return;
_IO_wsetb (fp, fp->_wide_data->_shortbuf,
fp->_wide_data->_shortbuf + 1, 0);
}
libc_hidden_def (_IO_wdoallocbuf)
需要满足fp->_wide_data->_IO_buf_base != 0和fp->_flags & _IO_UNBUFFERED == 0
- _IO_WDOALLOCATE函数也就是直接执行JUMP_INIT(doallocate, _IO_wfile_doallocate)
#define _IO_WDOALLOCATE(FP) WJUMP0 (__doallocate, FP)
_IO_wfile_underflow_mmap
此方法和上述方法很相似,只不过为了绕过不同的限制fp设置有些不同,具体参考博客就行,不再过多阐述 对fp的设置如下:
- _flags设置为~4,如果不需要控制rdi,设置为0即可;如果需要获得shell,可设置为 sh;,注意前面有个空格
- vtable设置为_IO_wfile_jumps_mmap地址(加减偏移),使其能成功调用_IO_wfile_underflow_mmap即可
- _IO_read_ptr < _IO_read_end,即满足*(fp + 8) < *(fp + 0x10)
- _wide_data设置为可控堆地址A,即满足*(fp + 0xa0) = A
- _wide_data->_IO_read_ptr >= _wide_data->_IO_read_end,即满足*A >= *(A + 8)
- _wide_data->_IO_buf_base设置为0,即满足*(A + 0x30) = 0
- _wide_data->_IO_save_base设置为0或者合法的可被free的地址,即满足*(A + 0x40) = 0
- _wide_data->_wide_vtable设置为可控堆地址B,即满足*(A + 0xe0) = B
- _wide_data->_wide_vtable->doallocate设置为地址C用于劫持RIP,即满足*(B + 0x68) = C
函数调用链如下:
_IO_wfile_underflow_mmap
_IO_wdoallocbuf
_IO_WDOALLOCATE
*(fp->_wide_data->_wide_vtable + 0x68)(fp)
_IO_wfile_underflow_mmap函数
static wint_t
_IO_wfile_underflow_mmap (FILE *fp)
{
struct _IO_codecvt *cd;
const char *read_stop;
if (__glibc_unlikely (fp->_flags & _IO_NO_READS))
{
fp->_flags |= _IO_ERR_SEEN;
__set_errno (EBADF);
return WEOF;
}
if (fp->_wide_data->_IO_read_ptr < fp->_wide_data->_IO_read_end)
return *fp->_wide_data->_IO_read_ptr;
cd = fp->_codecvt;
/* Maybe there is something left in the external buffer. */
if (fp->_IO_read_ptr >= fp->_IO_read_end
/* No. But maybe the read buffer is not fully set up. */
&& _IO_file_underflow_mmap (fp) == EOF)
/* Nothing available. _IO_file_underflow_mmap has set the EOF or error
flags as appropriate. */
return WEOF;
/* There is more in the external. Convert it. */
read_stop = (const char *) fp->_IO_read_ptr;
if (fp->_wide_data->_IO_buf_base == NULL)
{
/* Maybe we already have a push back pointer. */
if (fp->_wide_data->_IO_save_base != NULL)
{
free (fp->_wide_data->_IO_save_base);
fp->_flags &= ~_IO_IN_BACKUP;
}
_IO_wdoallocbuf (fp);// 需要走到这里
}
//......
}
需要设置fp->_flags & _IO_NO_READS == 0,设置fp->_wide_data->_IO_read_ptr >= fp->_wide_data->_IO_read_end,设置fp->_IO_read_ptr < fp->_IO_read_end不进入调用,设置fp->_wide_data->_IO_buf_base == NULL和fp->_wide_data->_IO_save_base == NULL。
_IO_wdefault_xsgetn
这条链执行的条件是调用到_IO_wdefault_xsgetn时rdx寄存器,也就是第三个参数不为0。如果不满足这个条件,可选用其他链。
对fp的设置如下:
- _flags设置为0x800
- vtable设置为_IO_wstrn_jumps/_IO_wmem_jumps/_IO_wstr_jumps地址(加减偏移),使其能成功调用_IO_wdefault_xsgetn即可
- _mode设置为大于0,即满足*(fp + 0xc0) > 0
- _wide_data设置为可控堆地址A,即满足*(fp + 0xa0) = A
- _wide_data->_IO_read_end == _wide_data->_IO_read_ptr设置为0,即满足*(A + 8) = *A
- _wide_data->_IO_write_ptr > _wide_data->_IO_write_base,即满足*(A + 0x20) > *(A + 0x18)
- _wide_data->_wide_vtable设置为可控堆地址B,即满足*(A + 0xe0) = B
- _wide_data->_wide_vtable->overflow设置为地址C用于劫持RIP,即满足*(B + 0x18) = C
函数调用链如下:
_IO_wdefault_xsgetn
__wunderflow
_IO_switch_to_wget_mode
_IO_WOVERFLOW
*(fp->_wide_data->_wide_vtable + 0x18)(fp)
- _IO_wdefault_xsgetn
size_t
_IO_wdefault_xsgetn (FILE *fp, void *data, size_t n)
{
size_t more = n;
wchar_t *s = (wchar_t*) data;
for (;;)
{
/* Data available. */
ssize_t count = (fp->_wide_data->_IO_read_end
- fp->_wide_data->_IO_read_ptr);
if (count > 0)
{
if ((size_t) count > more)
count = more;
if (count > 20)
{
s = __wmempcpy (s, fp->_wide_data->_IO_read_ptr, count);
fp->_wide_data->_IO_read_ptr += count;
}
else if (count <= 0)
count = 0;
else
{
wchar_t *p = fp->_wide_data->_IO_read_ptr;
int i = (int) count;
while (--i >= 0)
*s++ = *p++;
fp->_wide_data->_IO_read_ptr = p;
}
more -= count;
}
if (more == 0 || __wunderflow (fp) == WEOF)
break;
}
return n - more;
}
libc_hidden_def (_IO_wdefault_xsgetn)
由于more是第三个参数,所以不能为0。for为无限循环 直接设置fp->_wide_data->_IO_read_ptr == fp->_wide_data->_IO_read_end,使得count为0,不进入if分支。 随后当more != 0时会进入__wunderflow
- __wunderflow
wint_t
__wunderflow (FILE *fp)
{
if (fp->_mode < 0 || (fp->_mode == 0 && _IO_fwide (fp, 1) != 1))
return WEOF;
if (fp->_mode == 0)
_IO_fwide (fp, 1);
if (_IO_in_put_mode (fp))
if (_IO_switch_to_wget_mode (fp) == EOF)
return WEOF;
// ......
}
要想调用到_IO_switch_to_wget_mode,需要设置fp->mode > 0,并且fp->_flags & _IO_CURRENTLY_PUTTING != 0。进入_IO_switch_to_wget_mode函数中
- _IO_switch_to_wget_mode
int
_IO_switch_to_wget_mode (FILE *fp)
{
if (fp->_wide_data->_IO_write_ptr > fp->_wide_data->_IO_write_base)
if ((wint_t)_IO_WOVERFLOW (fp, WEOF) == WEOF) // 需要走到这里
return EOF;
// .....
}
当满足fp->_wide_data->_IO_write_ptr > fp->_wide_data->_IO_write_base时就会调用_IO_WOVERFLOW(fp)